AIRPORT COLLABORATIVE DECISION MAKING

AIRPORT CDM at Stuttgart AIRPORT

Brief Description/Process Description

Co-financed by the European Union
Trans-European Transport Network (TEN-T)
Table of contents:

1. General .. 5
 1.1. Purpose of the document ... 5
 1.2. General, definition and partners .. 5
 1.3. Objectives of Airport CDM .. 6
 1.4. Coordination with NMOC ... 6
 1.5. Main characteristics of the procedure ... 7
 1.5.1 Transparency of the process ... 7
 1.5.2 Airport CDM is a common operational process ... 7
 1.5.3 Combination of the day of operations and schedule planning .. 8
 1.5.4 Feasibility of the turn-round process ... 8
 1.5.5 Usage of Target off Block Time as the target time for „Aircraft Ready“ 9
 1.5.6 Usage of the “Variable Taxi Times” .. 9
 1.5.7 Introduction of the „Target Start Up Approval Time“ .. 10
 1.5.8 Procedure adherence ... 10
 1.5.9 „Linking the airport into the network” .. 11
2. Procedure... 12
 2.1. Procedure overview .. 12
 2.2. Correlation of flight information .. 13
 2.2.1. Airport Slot discrepancy .. 13
 2.2.2. Airport slot missing ... 13
 2.2.3. Points of contact .. 13
 2.2.4. Early DPI – data exchange with NMOC .. 14
 2.2.5. Target-DPI - data exchange with NMOC .. 15
 2.2.6. Flight Update Message (FUM) – data exchange with NMOC .. 16
 2.2.7. Potential Airport CDM Alerts ... 16
2.3. Target Off Block Time (TOBT) ... 17
 2.3.1. Automatically generated TOBT ... 17
 2.3.2. Person responsible for the TOBT .. 18
 2.3.3. TOBT input and adjustment .. 18
 2.3.4. Deviations between TOBT and EOBT .. 18
 2.3.5. TOBT deletion .. 19
 2.3.6. Cancel-DPI – Data exchange with NMOC .. 19
 2.3.7. TOBT in case of a change of aircraft .. 19
 2.3.8. TOBT reporting channels ... 20
 2.3.9. TOBT information at the electronic display on position .. 21
 2.3.10. Potential Airport CDM Alerts ... 21
2.4. Target Start Up Approval Time - TSAT .. 22
 2.4.1. Publication of the TSAT .. 22
 2.4.2. TSAT reporting channels .. 23
 2.4.3. Target-DPI „Sequenced“ – data exchange with NMOC ... 24
 2.4.4. Example of TSAT and DPI generation .. 25
 2.4.5. Changes within the sequence .. 25
 2.4.6. Potential Airport CDM Alerts .. 26
2.5. De-icing .. 27
2.6. Start-Up and Push-Back ... 28
 2.6.1. Datalink Clearance - DCL .. 29
 2.6.2. ATC-DPI (A-DPI) – data exchange with NMOC ... 30
3. Common Situational Awareness / Information Sharing .. 31
 3.1. CaeSAr (CSA Tool) .. 31
 3.2. Display system of NMOC ... 32
 3.2.1. NMOC flight list ... 32
 3.2.2. NMOC flight data .. 33
 3.2.3. NMOC Operational Log ... 33
 3.3. Airport CDM alerting ... 34
 3.3.1. Contact address and information .. 34
 3.3.2. Airport CDM alert messages .. 35
4. Publication .. 42
 4.1. Aeronautical Information Publication (AIP) .. 42
 4.2. Airport User Regulations (FBO) .. 42
5. Persons in charge of the process/points of contact ... 42
1. General

1.1. Purpose of the document

This document describes the Airport Collaborative Decision Making (CDM) procedure at Stuttgart airport and is to be understood and used as a basis for the different partners, such as ground handling agents and Airline OCC.

Together with the publications about Airport CDM (Aeronautical Information Publication – AIP – Germany and the airport user regulations FBO), this document is to ensure that Airport CDM at Stuttgart airport is handled in an optimal way in the interest of all partners.

This Version becomes valid: May 2014. This Document, will replace all preceding versions.

1.2. General, definition and partners

Airport CDM is an operational overall process (concept/procedure) supporting an optimized turn-round process at Stuttgart airport. It covers the period of time between the estimated off-block time (EOBT) - 3hrs and take-off and is a coherent process from flight planning (ATC flight plan) to landing and the subsequent turn-round process on the ground before the next take-off.

Airport CDM at Stuttgart airport is based on the European Airport CDM, the common specification (“Community Specification”) for A-CDM and the “German initiative on the harmonisation of Airport CDM”.

![Airport CDM Diagram](image)
1.3. Objectives of Airport CDM

Airport CDM aims at optimally utilising the available capacities and operational resources at Stuttgart airport by increasing the efficiency of the individual steps of the turn-round process.

Airports can be integrated into the European ATM network through the exchange of reliable estimated arrival and departure times between Airport CDM and Network Manager Operation Centre (NMOC).

Airport CDM optimises operational cooperation between the following partners:

- Airport operator
- Airlines
- Handling agents
- Ground handling agents
- Air navigation service provider
- Network Manager Operation Centre (NMOC)

1.4. Coordination with NMOC

Due to a fully automated data exchange with Network Manager Operation Centre (NMOC), landing and take-off times can be forecasted in a timely and reliable manner and/or precisely calculated take-off times (CTOT) can be given, based on local target take-off times.

The following messages are used:

- Flight update message, FUM
- Early departure planning information message, E-DPI
- Target departure planning information message, T-DPI target
- Target departure planning information message, T-DPI sequenced
- ATC departure planning information message, A-DPI
- Cancel departure planning information message, C-DPI

The basic procedures for cooperation between the airlines and/or DFS and NMOC remain the same.

Furthermore, all estimated departure times are automatically transmitted to NMOC during the turn-round process. In the case of delays caused by the airlines, the common CTOT allocation mechanisms apply. These allocation mechanisms are confirmed and/or refined via DPI messages. NMOC determines and allocates the CTOT on the basis of these estimated departure times (DPI).
1.5. Main characteristics of the procedure

The main characteristics of Airport CDM are:

1.5.1 Transparency of the process

Common situational awareness is guaranteed for all partners

1.5.2 Airport CDM is a common operational process

ATC flight plan / landing / turn-round process / take-off
1.5.3 Combination of the day of operations and schedule planning
Comparison and adjustment of the ATC flight plan, airport slot and airport flight data

1.5.4 Feasibility of the turn-round process
Combination, check and adjustment of linked arrivals and departures
1.5.5 Usage of Target off Block Time as the target time for „Aircraft Ready“

The TOBT is the essential contribution of the airline to the airport CDM process. TOBT = Airline commitment.

1.5.6 Usage of the “Variable Taxi Times”

Calculation of all Target Times taking into account the parking position, runway in use and actual landing direction as well as the de-icing duration of remote de-icing:

EXOT = Estimated Taxi Out Time.
1.5.7 Introduction of the „Target Start Up Approval Time“

The TSAT resulting from the TOBT, EXOT, CTOT (if regulated) and the actual operational capacity, provides the basis for the pre-departure sequence and the moment at which the start-up approval can be expected.

TSAT = Airport CDM commitment

1.5.8 Procedure adherence

Start-up approvals/push-back clearances are issued taking into account the TOBT and TSAT.
1.5.9 „Linking the airport into the network“
High-quality forecasts for inbound and outbound traffic by means of an automated data exchange with European ATFM (NMOC)
2. Procedure

2.1. Procedure overview

This chart depicts the scope of the Airport CDM procedure at Stuttgart airport from the time of ATC flight plan activation (EOBT -3h) till take-off. The orange arrows depict the data transfer with NMOC, the brown arrow shows the exchange of information via interfaces, dialogue systems, e-mail etc. with the relevant aircraft operator and/or handling agent with regard to potential adjustments which may become necessary.

The main aspects of the procedure are sub-divided and described as follows:

- **Correlation of flight information** – section 2.2
- **Target Off Block Time** – section 2.3
- **Target Start Up Approval Time** – section 2.4
- **Aircraft De-icing** – section 2.5
- **Start Up and Push Back** – section 2.6
2.2. **Correlation of flight information**

The Airport CDM procedure begins with the transmission of the ATC flight plan to the Airport CDM Portal (airport operator data base).

The ATC flight plan will be correlated with the flight data submitted to the airport as well as with the airport slot (SOBT) included therein. In particular, the focus is on:

- linking inbound and outbound flights
- comparing the airport slot (SOBT) for the outbound flight with the EOBT of the ATC flightplan

This comparison is usually made at the EOBT -3hrs. If the ATC flight plan is filed at a later stage, the commencement of the Airport CDM procedure is postponed to this time.

2.2.1. **Airport Slot discrepancy**

If the SOBT deviates from the estimated off-block time (EOBT), the contact person of the airline is advised by the A-CDM alerting to adjust the times accordingly.

2.2.2. **Airport slot missing**

If no airport slot is available at the time of the expected conduct of the flight, the flight cannot be sequenced and thus not handled or conducted. The contact person of the airline is advised by the A-CDM alerting to coordinate an airport slot.

2.2.3. **Points of contact**

The Stuttgart traffic operation centre is in charge of the activities concerning the correlation of flight information:

Traffic Operations Centre of FSG
2.2.4. Early DPI – data exchange with NMOC

An early departure planning information message (E-DPI) is generated and transmitted to NMOC for flight plans validated in accordance with the sections mentioned above (airport slot available).

Flights with an E-DPI are marked in NMOC system as flights from a CDM airport and are then considered accordingly in further processing (e.g. optimised CTOT allocation in accordance with the local target times).

Example of an Early DPI

-TITLE DPI
-DPISTATUS EARLY
-ARCID DLH2HH
-ADEP EDDS
-ADES EDDH
-EOBT 1920
-EOBD 120312
-TOBT 1920
-TSAT 1920
-TAXITIME 0014
-TTOT 1934
-SOBT 1920
-SID OKIBA2B
-ARCTYP A320
-REG DAIQW
-DEPSTATUS
-IFPLID AA12345678
-ORIGIN - NETWORK TYPE AFTN – FAC EDDSYDYX
2.2.5. Target-DPI - data exchange with NMOC

As a rule, a T-DPI with the status "Target" is generated two hours before the EOBT for all flights for which an E-DPI has been generated. The T-DPI is transmitted to NMOC in the same way as the E-DPI.

The T-DPI is used to transmit a Target Take-Off Time (TTOT) to NMOC. The T-DPI opens a so-called "slot adjustment window" within which the CTOT is adjusted to the relevant reported TTOT in the best possible manner.

If the TTOT is changed by five minutes or more, if taxi times are adjusted by three minutes or more or if the SID, aircraft type or registration is changed, a new T-DPI is generated and transmitted to NMOC.

Example of a Target DPI:

-TITLE DPI
-DPISTATUS TARGET
-ARCID DLH2HH
-ADEP EDDS
-ADES EDDH
-EOBT 1920
-EOBD 120312
-TOBT 1920
-TSAT 1920
-TAXITIME 0014
-TTOT 1934
-SOBT 1920
-SID OKIBA2B
-ARCTYP A320
-REG DAIQW
-DEPSTATUS
-IFPLID AA12345678
-ORIGIN - NETWORK TYPE AFTN – FAC EDSDYDYX
2.2.6. Flight Update Message (FUM) – data exchange with NMOC

Flight update messages (FUM) are received for flights to Stuttgart Airport (inbound). The following operational events trigger the transmission of an FUM:

- estimated landing time (ELDT) minus 3 hours
- modification of the ELDT by 5 minutes or more
- changes to the ETFMS status, e.g. diversion of an inbound flight.

The FUM provides an ELDT in advance which allows the system to compare the inbound with the outbound flight plan, i.e. the EIBT with the EOBT.

If the calculated EIBT is later than the EOBT of the linked outbound flight plan, the contact person of the airline is notified accordingly. It is expected that the relevant times (delay message - DLA -) or the outbound flight plan (change of aircraft – CHG – or flight plan cancellation – CNL – and new flight plan) will be adjusted in a timely manner.

Furthermore, the ELDT of the FUM has strong effects on:

- optimum gate and position planning as well as further resources planning
- automatic TOBT generation
- further use of resources (e.g. ground handling).

2.2.7. Potential Airport CDM Alerts

Potential Airport CDM alerts concerning the combination of different flight information described in section 2.2 include:

- **CDM01** No Airport Slot available, or Slot already correlated
- **CDM02** SOBT vs EOBT discrepancy
- **CDM03** Aircraft Type discrepancy
- **CDM04** Registration discrepancy
- **CDM05** First Destination Discrepancy
- **CDM07** EIBT+MTTT Discrepancy with EOBT
- **CDM07a** EIBT+MTTT Discrepancy with TOBT
- **CDM08** EOBT Compliance Alert
- **CDM13** No ATC Flight Plan Available
- **CDM20** “Inbound diversion”

Details on the Airport CDM alerts are given in section 3.3.
2.3. Target Off Block Time (TOBT)

The TOBT is a point in time to be monitored and confirmed by the airline/handling agent at which the ground handling process is concluded, all aircraft doors are closed, all passenger boarding bridges have been removed from the aircraft and thus start-up approval and push-back/taxi clearance can be received.

All ground handling processes, except for push-back and remote de-icing, are based on the TOBT. The TOBT is used as the optimum time for coordination.

TOBT = forecast of "Aircraft ready"

2.3.1. Automatically generated TOBT

At time “Twelve Minutes Out” (TMO), a TOBT for the linked outbound flight is generated automatically. The earliest time for the publication of the automatically generated TOBT is 90 minutes before EOBT (EOBT-90).

For all other flights a TOBT will automatically be generated 90 minutes before EOBT.

The Minimum Turn-round Time (MTTT) is applied when the TOBT is generated. The MTTT is a time which is stored in the airport database and depends on the airline, aircraft type and sort of flight.

Important dependencies for the automatic initial TOBT generation:

- TOBT = EOBT if: EIBT + MTTT ≤ EOBT + 5’
- TOBT = EIBT + MTTT if: EIBT + MTTT > EOBT + 5’
- TOBT for flights with CTOT only: if: TOBT + EXOT ≤ CTOT + 10’

If the TOBT is not automatically generated, it has to be entered by the person responsible for the TOBT as described in section 2.3.3.
2.3.2. Person responsible for the TOBT

Airlines have to ensure:

- the nomination of one person responsible for the TOBT,
- the communication with the relevant airline OCC (ATC flight plan/person responsible for the EOBT) and
- the coordination of internal working procedures

The person responsible for the TOBT (generally the handling agent), the airline (for flights without handling agent) or the pilot-in-command (for general aviation flights without handling agent) is responsible for the correctness of and the adherence to the TOBT.

A wrong TOBT leads to disadvantages for further sequencing and/or CTOT allocation of regulated flights. Therefore, the TOBT has to be adjusted as early as possible.

2.3.3. TOBT input and adjustment

The following facts have to be taken into account for the input and/or adjustment of the TOBT:

- the earliest possible input of a TOBT (before automatic generation) is EOBT-180 min.
- the inserted TOBT has to be between EOBT - 10 minutes and EOBT + 120 minutes
- a manually set TOBT will never be overwritten by an automatically generated TOBT
- the TOBT can be adjusted as often as necessary until the TSAT has been issued
- after the TSAT has been issued, the TOBT can only be corrected three times
- the entered TOBT has to be at least 5 minutes later than the actual time

As the TOBT is also the basis for further airport processes, adjustments of the TOBT (also if the process is completed more than five minutes in advance) are to be entered by the person responsible for the TOBT.

2.3.4. Deviations between TOBT and EOBT

If the TOBT deviates from the EOBT of the ATC flight plan by more than 15 minutes, the airline has to initiate an additional delay message (DLA, CHG). This new EOBT has to be based on the last TOBT.
2.3.5. TOBT deletion

The TOBT has to be deleted in the following cases:

- the TOBT cannot be met, a new TOBT is unknown (e.g. technical problems with the aircraft)
- the permitted number of TOBT inputs (three times) after the generation of the TSAT has been exceeded

If the TOBT is deleted, the TSAT is automatically deleted as well.

If a new TOBT is known and the process shall continue, the person responsible for the TOBT has to enter a new TOBT.

2.3.6. Cancel-DPI – Data exchange with NMOC

As soon as the TOBT for a flight is deleted and a new TOBT is not set after 2 minutes, a C-DPI message is transmitted to NMOC. The flight is no longer subject to the special handling process for flights from CDM airports. Then the CTOT is issued on the basis of the flight plan data available at NMOC until a new DPI (triggered by the new TOBT input) is available for the flight.

```
-TITLE DPI
-DPISTATUS CNL
-ARCID DLH2HH
-ADEP EDDS
-ADES EDDH
-EOBT 1920
-EOBD 120312
-IFPLID AA12345678
-ORIGIN - NETWORK TYPE AFTN – FAC EDDSYDYX
```

2.3.7. TOBT in case of a change of aircraft

If the aircraft is changed, a change message (CHG - type/registration) has to be sent and the TOBT remains in effect and is allocated to the new aircraft.
2.3.8. TOBT reporting channels

The TOBT is reported and/or adjusted in one of the following ways:

- Input into the Common Situational Awareness Tool (CaeSAr/WebCaeSAr)
- Input into an own system by the TOBT responsible and transmission by interface
- Exceptionally by input by FSG Traffic Operations Centre into CaeSAr after request by phone
- Exceptionally by input by DFS into TFDPS or CaeSAr after request

For general aviation flights:

- Input by the handling agent of general aviation (Kurz Aviation Service)
- Exceptionally by DFS by input into TFDPS or CaeSAr if the handling agent general aviation is not available.
2.3.9. TOBT information at the electronic display on position

At the electronic display on position the TOBT will be shown in UTC time. As additional information the remaining minutes until reaching the TOBT will be indicated too. At TOBT the display will switch to TSAT, the timer will no longer be displayed.

2.3.10. Potential Airport CDM Alerts

Potential Airport CDM alerts concerning the TOBT:

- CDM08 EOBT Compliance Alert
- CDM09 Boarding Not Started
- CDM10 TOBT Rejected or Deleted
- CDM11 Flight not compliant with TOBT / TSAT
- CDM14 Automatic TOBT Generation not possible

Details on the Airport CDM alerts are given in section 3.3.
2.4. **Target Start Up Approval Time - TSAT**

The TSAT is the point in time calculated by the Airport CDM sequence planning system at which the start-up approval can be expected. The pre-departure sequence is based on the flights with a calculated TSAT.

2.4.1. **Publication of the TSAT**

The TSAT is published 40 minutes prior to the valid TOBT. After TSAT has been published, the TOBT can only be corrected another three times to ensure a stable sequence and CTOT allocation. As a rule, the TSAT remains in effect if the TOBT is changed, unless the new TOBT is later than the calculated TSAT.

The calculation of the TSAT is based on the following factors:

- TOBT
- CTOT (for regulated flights)
- Operational capacity at the airport
- Minimum Departure Intervall (MDI)
- Variable taxitime
- Parking position
- Runway in use
- Aircraft de-icing
2.4.2. TSAT reporting channels

The TSAT is acknowledged and/or reported in one of the following ways:

- Displayed in WebCaeSAr / CaeSAr
- Display in APIS
- Transmission via interface to AO/GH systems
- Exceptionally transmission via radio by ATC

TSAT or changes of the TSAT have to be reported by the person responsible for the TOBT to the Flight Crew/pilot.
2.4.3. Target-DPI „Sequenced“ – data exchange with NMOC

When the TSAT is generated, a T-DPI message with the status "sequenced" is transmitted to NMOC for unregulated flights (flights without a CTOT).

Flights for which a T-DPI message with the status "sequenced" has been transmitted have a particular status within NMOC system.

The status "Target" (section 2.2.5) remains in effect for regulated flights. However, a T-DPI "Sequenced" can be manually generated by the control tower later on; otherwise the T-DPI for regulated flights is issued at the actual start-up time (ASAT).

The transmission of a "Ready" message is no longer required for regulated flights with the T-DPI "Sequenced".

The CTOT is adjusted to the local TTOT in the best possible manner.

If the TTOT is changed by five minutes or more, if taxi times are adjusted by three minutes or more or if the SID, aircraft type or registration is changed, a new T-DPI is generated and transmitted to NMOC.

Examples of the target DPI (status sequenced):

- TITLE DPI
- DPISTATUS SEQ
- ARCID DLH2HH
- ADEP EDDS
- ADES EDDH
- EOBT 1920
- EOBD 120312
- TOBT 1920
- TSAT 1920
- TAXITIME 0014
- TTOT 1934
- SID OKIBA2B
- ARCTYP A320
- REG DAIQW
- DEPSTATUS
- IFPLID AA12345678
- ORIGIN - NETWORK TYPE AFTN – FAC EDDSYDYX
2.4.4. Example of TSAT and DPI generation

![Diagram of Pre Departure Sequence]

2.4.5. Changes within the sequence

After the TSAT has been calculated, flights within the area of responsibility of a person responsible for the TOBT can be switched. The following prerequisites have to be observed:

- Same TOBT responsible and same airline
- Both flights are not regulated
- Both flights require de icing - or both flights do not require de icing
- Both flights have not been switched yet.
- Both flights are restricted by the same MDI or by no MDI
- Both flights have a TTOT outside night curfew

Within CaeSAr / WebCaeSAr the person responsible for the TOBT is able to identify flights which can be switched. The switch has to be requested by phone and will be acknowledged by ATC.
2.4.6. Potential Airport CDM Alerts

Potential Airport CDM alerts concerning the TSAT include:

- CDM08 EOBT Compliance Alert
- CDM10 TOBT Rejected or Deleted
- CDM11 Flight not compliant with TOBT / TSAT

Details on the Airport CDM alerts are given in section 3.3.
2.5. **De-icing**

Aircraft de-icing times must not be taken into account for the calculation of the TOBT, because de-icing request and the approximately de-icing period will be the basis for the calculation of the TSAT. Therefore de-icing should be requested as early as possible.

The request for de-icing may be performed via input into WebCaeSAr or by radio.

For flights which have no contract with any de-icing service provider the requested de-icing service provider has to be selected together with the de-icing request. The flight will be taken into account for departure sequencing only after a confirmation by the de-icing service provider has been received.

In case of de-icing the DPI message to NMOC will contain the additional status “De-Icing”

Example of a Target DPI „sequenced“ with de-icing status:

```
-TITLE DPI
-DPISTATUS SEQ
-ARCID DLH2HH
-ADEP EDDS
-ADES EDDH
-EOBT 1920
-EOBD 120312
-TOBT 1920
-TSAT 1920
-TAXITIME 0024
-TTOT 1944
-SID OKIBA2B
-ARCTYP A320
-REG DAIQW
-DEPSTATUS DEICING
-IFPLID AA12345678
-ORIGIN - NETWORK TYPE AFTN – FAC EDDSYDYX
```
2.6. Start-Up and Push-Back

Start-up (ASAT) and push-back (AOBT) clearances are issued taking into account the TOBT and TSAT. The following rules shall apply:

- The aircraft has to be ready for start-up at TOBT.
- in principle the timeframe for start-up approval and en-route clearance is TSAT +/- five minutes
 - The pilot should request start-up approval and en-route clearance TSAT +/- five minutes.
 - Clearance Delivery issues the start-up approval and en-route clearance depending on TSAT and the current traffic situation.
- The push-back/taxi clearance has to be requested not later than five minutes after the start-up approval has been issued.
- In case of delays Clearance Delivery has to be informed. Otherwise the TOBT will be deleted and has to be re-entered.
- After the start-up approval has been issued a change of TOBT is no longer possible.
2.6.1. Datalink Clearance - DCL

The published procedures and the time parameters published in the AIP AD 2 EDDS continue to apply to datalink departure clearances (DCL).

The TSAT is transmitted via CLD (departure clearance uplink message – issue of the start-up approval and en-route clearance by Clearance Delivery). The received TSAT is valid at the time of transmission and will not be updated by datalink. Even when the TSAT changes a start-up approval will be still valid. After TSAT -5 minutes a change of TOBT is no longer possible.

„Start Up approved TSAT <hh:mm>“

The push-back/taxi clearance has to be requested latest at TSAT +5 minutes.

Example:
2.6.2. ATC-DPI (A-DPI) – data exchange with NMOC

At the Actual Off-Block Time an A-DPI will be sent to NMOC. The “slot adjustment window” is closed and the CTOT can no longer be changed automatically by NMOC.

Example ATC DPI:

-TITLE DPI
-DPSTATUS ATC
-ARCID DLH2HH
-ADEP EDDS
-ADES EDDH
-EOBT 1920
-EOBD 120312
-TAXITIME 0024
-TTOT 1944
-SID OKIBA2B
-ARCTYP A320
-REG DAIQW
-DEPSTATUS DEICING
-IFPLID AA12345678
-ORIGIN - NETWORK TYPE AFTN – FAC EDDSyDYX
3. Common Situational Awareness / Information Sharing

Transparency for all partners involved is the basis for conducting the Airport CDM process. IT interfaces, dialogue systems, alert messages, data exchange with NMOC, telephone coordination etc. ensure common situational awareness.

3.1. CaeSAr (CSA Tool)

All relevant information concerning the Airport CDM process at Stuttgart Airport can be made available to the participants via the CSA-Tool CaeSAr. In addition the system serves for the input of all relevant data by the TOBT responsible.

The system CaeSAr is presently developed; when available the corresponding information will be published in this chapter.
3.2. Display system of NMOC

Information on the Airport CDM data exchange with NMOC can be obtained in the different display options via the available NMOC reporting channels.

Access to NMOC display system can be requested from Eurocontrol online: www.eurocontrol.int/network-manager

3.2.1. NMOC flight list

The flight list contains information on:

- TTOT
- transmitted DPI type
- IFPS inconsistencies
- EOBT inconsistencies
- „Ready status“
3.2.2. NMOC flight data
Details on the Airport CDM data exchange are given for selecting individual flights from "Flight Data" (directly or from the flight list).

3.2.3. NMOC Operational Log
All exchanged (transmitted and received) messages can be retraced in the "operational log" option of selected flights.
3.3. Airport CDM alerting

Due to European harmonisation/standardisation, Airport CDM alerts bear the same code all over Europe. A further harmonisation of the A-CDM alerts via the “Initiative on the German harmonisation of Airport CDM” takes place to reach a common alerting procedure all over Germany.

3.3.1. Contact address and information

In order to receive Airport CDM alert messages, all airlines/handling agents have to provide a valid contact address (e-mail) for the FSG under:

airport-cdm@stuttgart-airport.com

It is also possible to provide several contact addresses for one airline (e.g. referring to a specific alert), if necessary.

In order to ensure optimal process handling and sequencing, it is highly recommended to provide this address (or several addresses) as well as information on necessary changes.

This does not apply to general aviation flights without handling agents because the messages from the Airport CDM procedure are transmitted to the handling Agent (Kurz Aviation Service) of general aviation.
3.3.2. Airport CDM alert messages

CDM01 “No Airport Slot available, or Slot already correlated”

DLH1AB/LH123
CDM01
1002171200UTC
STR/EDDS
AIRPORT SLOT SOBT 1200 UTC NOT AVAILABLE OR SLOT ALREADY CORRELATED. IMMEDIATE UPDATE OF ATC FLIGHT PLAN EOBT 1100 OR REQUEST NEW AIRPORT SLOT.

THE AIRPORT CDM PROCESS WILL BE SUSPENDED UNTIL RECEPTION OF YOUR RECTIFICATION.

CDM02 “SOBT vs. EOBT discrepancy”

DLH1AB/LH123
CDM02
1002171200UTC
STR/EDDS
ATC FLIGHT PLAN EOBT 1200 IS NOT CONSISTENT WITH AIRPORT SLOT SOBT 1100 UTC. IMMEDIATE UPDATE OF AIRPORT SLOT OR ATC FLIGHT PLAN EOBT NEEDED.

CDM03 “Aircraft Type discrepancy”

DLH1AB/LH123
CDM03
1002171200UTC
STR/EDDS
AIRCRAFT TYPE INCONSISTENCY BETWEEN ATC FLIGHT PLAN A320 AND AIRPORT DATABASE B735. IMMEDIATE UPDATE OF ATC FLIGHT PLAN OR AIRPORT DATABASE NEEDED.

THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START UP / PUSHBACK CLEARANCE WILL NOT BE GRANTED UNTIL DISCREPANCY IS RESOLVED.
CDM04 “Aircraft Registration discrepancy”
DLH1AB/LH123
CDM04
1002171200UTC
STR/EDDS
AIRCRAFT REGISTRATION INCONSISTENCY BETWEEN ATC FLIGHT PLAN DABCD AND AIRPORT DATABASE DAZXY.
IMMEDIATE UPDATE OF ATC FLIGHT PLAN OR AIRPORT DATABASE NEEDED.
THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START UP / PUSHBACK CLEARANCE WILL NOT BE GRANTED UNTIL DISCREPANCY IS RESOLVED.

CDM05 “First Destination discrepancy”
DLH1AB/LH123
CDM05
1002171200UTC
STR/EDDS
DESTINATION INCONSISTENCY BETWEEN ATC FLIGHT PLAN EDDH AND AIRPORT DATABASE ESSA.
IMMEDIATE UPDATE OF ATC FLIGHT PLAN OR AIRPORT DATABASE NEEDED.
PLEASE CLARIFY WITH AIRPORT TRAFFIC OPERATION CENTRE TEL: +49 711 948 2675.

CDM06 “Non-Airborne Alert” (not used)
DLH1AB/LH123
CDM06
1002171200UTC
STR/EDDS
NO INFORMATION THAT INBOUND FLIGHT IS AIRBORNE, EIBT 1200 MIGHT NOT BE RESPECTED.
CHECK OUTBOUND FLIGHT AND ATC FLIGHT PLAN AND UPDATE IF REQUIRED.
CDM07 “EIBT + MTTT discrepancy with EOBT”
DLH1AB/LH123
CDM07
1002171200UTC
STR/EDDS
EIBT 1300 OF INBOUND DLH1AX/LH122 + MTTT 0030 IS NOT CONSISTENT WITH OUTBOUND
ATC FLIGHT PLAN EOBT 1300.
CHECK OUTBOUND FLIGHT AND ATC FLIGHT PLAN AND UPDATE IF REQUIRED.
THIS IS AN ADVISORY ALERT ONLY AND THIS FLIGHT REQUIRES MONITORING AS THE
OUTBOUND FLIGHT MAYBE DELAYED.

CDM07a “EIBT + MTTT discrepancy with TOBT”
DLH1AB/LH123
CDM07a
1002171200UTC
STR/EDDS
EIBT 1300 OF INBOUND DLH1AX/LH122 + MTTT 0030 IS NOT CONSISTENT WITH OUTBOUND
TOBT 1300.
CHECK OUTBOUND FLIGHT AND TOBT AND UPDATE IF REQUIRED.
THIS IS AN ADVISORY ALERT ONLY AND THIS FLIGHT REQUIRES MONITORING AS THE
OUTBOUND FLIGHT MAYBE DELAYED.

CDM08 “EOBT Compliance Alert”
DLH1AB/LH123
CDM08
1002171200UTC
STR/EDDS
RECEIVED TOBT 1300 IS OUT OF ATC FLIGHT PLAN EOBT 1230 TOLERANCE WINDOW.
IMMEDIATE UPDATE OF ATC FLIGHT PLAN EOBT NEEDED.
EOBT AND TOBT SHALL NOT DIFFER BY MORE THAN 15 MINUTES. THE AIRPORT CDM
PROCESS WILL NOT BE SUSPENDED BUT START UP / PUSHBACK CLEARANCE MAY NOT
BE GRANTED UNTIL DISCREPANCY IS RESOLVED.
CDM09 “Boarding Not Started”
DLH1AB/LH123
CDM09
1002171200UTC
STR/EDDS
AT TOBT 1300 - 10 MINUTES BOARDING WAS NOT INITIATED.
UPDATE TOBT IF NEEDED.

THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START UP / PUSHBACK CLEARANCE MAY NOT BE GRANTED.

CDM10 “TOBT Rejected or Deleted”
DLH1AB/LH123
CDM10
1002171200UTC
STR/EDDS
TOBT 1300 WAS REJECTED OR DELETED.
NEW TOBT REQUIRED.

THE AIRPORT CDM PROCESS IS SUSPENDED UNTIL RECEPTION OF YOUR RECTIFICATION.

CDM11 “Flight not compliant with TOBT / TSAT”
DLH1AB/LH123
CDM11
1002171200UTC
STR/EDDS
FLIGHT NOT COMPLIANT WITH TOBT 1300 / TSAT 1300.
THIS FLIGHT WILL BE RE-SEQUENCED ON RECEIPT OF NEW TOBT.

THE AIRPORT CDM PROCESS MAY BE SUSPENDED UNTIL RECEPTION OF YOUR NEW TOBT / FPL.
CDM12 "TSAT Not Respected by ATC" (not used)

DLH1AB/LH123
CDM12
1002171200UTC
STR/EDDS
AT TSAT 1300 + 5 MINUTES AIRCRAFT HAS NOT BEEN GRANTED START UP OR PUSHBACK.
THIS FLIGHT NEEDS TO BE RESEQUENCED.

CDM13 "No ATC Flight Plan Available"

NO ARCID/LH123
CDM13
1002171200UTC
STR/EDDS
THE ATC FLIGHT PLAN IS NOT AVAILABLE.
SUBMISSION OF NEW ATC FLIGHT PLAN NEEDED.

ATC FPL DLH1AB HAS BEEN CANCELLED AND THE AIRPORT CDM PROCESS IS SUSPENDED.

CDM14 "Automatic TOBT Generation not possible"

DLH1AB/LH123
CDM14
1002171200UTC
STR/EDDS
THE TOBT COULD NOT BE AUTOMATICALLY GENERATED BECAUSE IT DOES NOT MATCH
WITH THE ASSOCIATED CTOT 1330.
MANUAL INPUT OF TOBT REQUIRED.

THE AIRPORT CDM PROCESS IS SUSPENDED UNTIL RECEIPTION OF YOUR
RECTIFICATION.
CDM17 “TTOT within night flight restriction”

DLH1AB/LH123
CDM17
1002171200UTC
STR/EDDS

TTOT 2200 AT OR BEYOND 23:00 LOCAL.
BE AWARE OF NIGHT FLIGHT RESTRICTION.

THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START UP AND / OR TAKE-OFF MAY NOT BE GRANTED.

CDM20 “Inbound diversion”

DLH1AB/LH123
CDM20
1002171200UTC
STR/EDDS

INBOUND FLIGHT DLH1AX/LH122 DIVERTED. TOBT 1300 OF CORRESPONDING OUTBOUND DLH1AB/DLH123 MAY NOT BE CORRECT.
CHECK OUTBOUND FLIGHT AND TOBT AND UPDATE IF REQUIRED.

THIS IS AN ADVISORY ALERT ONLY AND THIS FLIGHT REQUIRES MONITORING AS THE OUTBOUND FLIGHT MAYBE DELAYED.

CDM41 “Missing confirmation by de-icing provider”

DLH1AB/LH123
CDM41
1002171200UTC
STR/EDDS

CONFIRMATION BY DE-ICING PROVIDER IS MISSING.
CONTACT SELECTED DE-ICING PROVIDER IMMEDIATELY.

THE AIRPORT CDM PROCESS WILL BE SUSPENDED AT 1200.
CDM42 “No confirmation by de-icing provider”

DLH1AB/LH123
CDM42
1002171200UTC
STR/EDDS
NO CONFIRMATION BY DE-ICING PROVIDER.

THE AIRPORT CDM PROCESS IS SUSPENDED UNTIL RECEPTION OF YOUR RECTIFICATION.
4. Publication

4.1. Aeronautical Information Publication (AIP)
The Airport CDM procedure at Stuttgart Airport will be published in the German Aeronautical Information Publication, AD2-EDDS, AD 2.20 "Local Traffic Regulations".

4.2. Airport User Regulations (FBO)
The Airport CDM procedure at Stuttgart Airport will be published in the airport user regulations FBO.

5. Persons in charge of the process/points of contact

For questions concerning the procedure:
Flughafen Stuttgart GmbH
Nico Ruwe
Tel. +49 711 948 3028
ruwe@stuttgart-airport.com

DFS Deutsche Flugsicherung GmbH
Stephan Heinrich
Tel. +49-711 72257 111
stephan.heinrich@dfs.de

For questions concerning the IT:
Flughafen Stuttgart GmbH
Gerd Kühne
Tel.: +49 711 948 3526
kuehne@stuttgart-airport.com